Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
2.
Faraday Discuss ; 236(0): 58-70, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35506988

RESUMO

Interactions between a transition metal (oxide) catalyst and a support can tailor the number and nature of active sites, for instance in the methanol oxidation reaction. We here use ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to identify and compare the surface adsorbates that form on amorphous metal oxide films that maximize such interactions. Considering Al(1-x)MxOy (M = Fe or Mn) films at a range of methanol : oxygen gas ratios and temperatures, we find that the redox-active transition metal site (characterized by methoxy formation) dominates dissociative methanol adsorption, while basic oxygen sites (characterized by carbonate formation) play a lesser role. Product detection, however, indicates complete oxidation to carbon dioxide and water with partial oxidation products (dimethyl ether) comprising a minor species. Comparing the intensity of methoxy and hydroxyl features at a fixed XPS chemical shift suggests methanol deprotonation during adsorption in oxygen rich conditions for high transition metal content. However, increasing methanol partial pressure and lower metal site density may promote oxygen vacancy formation and the dehydroxylation pathway, supported by a nominal reduction in the oxidation state of iron sites. These findings illustrate that AP-XPS and mass spectrometry together are powerful tools in understanding metal-support interactions, quantifying and probing the nature of catalytic active sites, and considering the link between electronic structure of materials and their catalytic activity.

3.
ChemSusChem ; 14(11): 2267, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34002490

RESUMO

Invited for this month's cover is the collaborative work among Univ. of Milano-Bicocca, Ricerca sul Sistema Energetico S.p.A., Univ. degli Studi di Milano, Univ. of California Irvine, Univ. of New Mexico, CNRS Toulouse. Technische Univ. Braunschweig, Aquacycl LLC, J. Craig Venter Institute, Helmholtz-Centre for Environmental Research. The image shows a sketch of a microbial fuel cell and a target indicating the need of developing common standards for the field of microbial electrochemical technologies. The Full Paper itself is available at 10.1002/cssc.202100294.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Técnicas Eletroquímicas/métodos , Laboratórios , Pesquisa
4.
ChemSusChem ; 14(11): 2313-2330, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33755321

RESUMO

A cross-laboratory study on microbial fuel cells (MFC) which involved different institutions around the world is presented. The study aims to assess the development of autochthone microbial pools enriched from domestic wastewater, cultivated in identical single-chamber MFCs, operated in the same way, thereby approaching the idea of developing common standards for MFCs. The MFCs are inoculated with domestic wastewater in different geographic locations. The acclimation stage and, consequently, the startup time are longer or shorter depending on the inoculum, but all MFCs reach similar maximum power outputs (55±22 µW cm-2 ) and COD removal efficiencies (87±9 %), despite the diversity of the bacterial communities. It is inferred that the MFC performance starts when the syntrophic interaction of fermentative and electrogenic bacteria stabilizes under anaerobic conditions at the anode. The generated power is mostly limited by electrolytic conductivity, electrode overpotentials, and an unbalanced external resistance. The enriched microbial consortia, although composed of different bacterial groups, share similar functions both on the anode and the cathode of the different MFCs, resulting in similar electrochemical output.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Técnicas Eletroquímicas/métodos , Bactérias/metabolismo , Carbonatos/química , Eletricidade , Geografia , Águas Residuárias/química
6.
Environ Sci Process Impacts ; 23(1): 73-85, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33325952

RESUMO

We investigated the mechanisms of uranium (U) uptake by Tamarix (salt cedars) growing along the Rio Paguate, which flows throughout the Jackpile mine near Pueblo de Laguna, New Mexico. Tamarix were selected for this study due to the detection of U in the roots and shoots of field collected plants (0.6-58.9 mg kg-1), presenting an average bioconcentration factor greater than 1. Synchrotron-based micro X-ray fluorescence analyses of plant roots collected from the field indicate that the accumulation of U occurs in the cortex of the root. The mechanisms for U accumulation in the roots of Tamarix were further investigated in controlled-laboratory experiments where living roots of field plants were macerated for 24 h or 2 weeks in a solution containing 100 µM U. The U concentration in the solution decreased 36-59% after 24 h, and 49-65% in two weeks. Microscopic and spectroscopic analyses detected U precipitation in the root cell walls near the xylems of the roots, confirming the initial results from the field samples. High-resolution TEM was used to study the U fate inside the root cells, and needle-like U-P nanocrystals, with diameter <7 nm, were found entrapped inside vacuoles in cells. EXAFS shell-by-shell fitting suggest that U is associated with carbon functional groups. The preferable binding of U to the root cell walls may explain the U retention in the roots of Tamarix, followed by U-P crystal precipitation, and pinocytotic active transport and cellular entrapment. This process resulted in a limited translocation of U to the shoots in Tamarix plants. This study contributes to better understanding of the physicochemical mechanisms affecting the U uptake and accumulation by plants growing near contaminated sites.


Assuntos
Nanopartículas , Tamaricaceae , Urânio , New Mexico , Fósforo , Raízes de Plantas/química , Urânio/análise
7.
J Vac Sci Technol A ; 38(6): 063208, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33281279

RESUMO

We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of ∼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are ∼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are ∼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration.

8.
ACS Appl Mater Interfaces ; 12(38): 42678-42685, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32840099

RESUMO

Precious group metal (PGM) catalysts such as Pt supported on carbon supports are expensive catalysts utilized for the oxygen reduction reaction (ORR) due to their unmatched catalytic activity and durability. As an alternative, PGM-free ORR electrocatalysts that offer respectable catalytic activity are being pursued. Most of the notable PGM-free catalysts are obtained either from a bottom-up approach synthesis utilizing nitrogen-rich polymers as building blocks, or from a top down approach, where nitrogen and metal moieties are incorporated to carbonaceous matrixes. The systematic understanding of the origin of catalytic activity for either case is speculative and currently employed synthesis techniques typically generate large amounts of hazardous waste such as acids, oxidizing agents, and solvents. Herein, for the first time, we investigate the catalytic activity of graphite-based materials obtained via intercalation strategies that minimally perturb the graphitic backbone. Our outlined approaches demonstrate initial efforts to not only elucidate the role of each element but also significantly reduce the use of hazardous chemicals, which remains a pressing challenge. Graphite intercalation compounds (GIC) were obtained using fewer steps and solvent-free processes. X-ray diffraction and Raman results confirm the successful intercalation of FeCl3 between graphite layers. Electrochemical data shows that the ORR performance of FeCl3-intercalated GIC displays slight improvement where the onset potential reaches 0.77 V vs RHE in alkaline environments. However, expansion of the graphite and solvent-free incorporation of iron and nitrogen moieties resulted in a significant increase in ORR activity with onset potential to 0.89 V vs RHE, a maximum half-wave of 0.72 V vs RHE, and a limiting current of about 2.5 mA cm-2. We anticipate that the use of near solvent-free processes that result in a high yield of catalysts along with the fundamental insight into the origin of electrochemical activity will tremendously impact the methodologies for developing next-generation ORR catalysts.

9.
Chemphyschem ; 21(12): 1331-1339, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32337815

RESUMO

We investigated the oxygen reduction reaction (ORR) mechanism on Pt nanoparticles (NPs) dispersed on several carbon blacks with various physicochemical properties (i. e. specific surface ranging from 80 to 900 m2 g-1 , different graphitization degree, etc.). Using the kinetic isotope effect (KIE) along with various electrochemical characterizations, we determined that the rate determining step (RDS) of the ORR is a proton-independent step when the density of Pt NPs on the surface of the carbon support is high. Upon decrease of the density of Pt NPs on the surface, the RDS of the ORR starts involving a proton, as denoted by an increase of the KIE >1. This underlined the critical role played by the carbon support in the oxygen reduction reaction electrocatalysis by Pt supported on high surface area carbon.

11.
Artigo em Inglês | MEDLINE | ID: mdl-31579351

RESUMO

Over the past three decades, the widespread utility and applicability of X-ray photoelectron spectroscopy (XPS) in research and applications has made it the most popular and widely used method of surface analysis. Associated with this increased use has been an increase in the number of new or inexperienced users which has led to erroneous uses and misapplications of the method. This article is the first in a series of guides assembled by a committee of experienced XPS practitioners that are intended to assist inexperienced users by providing information about good practices in the use of XPS. This first guide outlines steps appropriate for determining whether XPS is capable of obtaining the desired information, identifies issues relevant to planning, conducting and reporting an XPS measurement, and identifies sources of practical information for conducting XPS measurements. Many of the topics and questions addressed in this article also apply to other surface-analysis techniques.

12.
Chem Geol ; 522: 26-37, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31371834

RESUMO

The reactivity of co-occurring arsenic (As) and uranium (U) in mine wastes was investigated using batch reactors, microscopy, spectroscopy, and aqueous chemistry. Analyses of field samples collected in proximity to mine wastes in northeastern Arizona confirm the presence of As and U in soils and surrounding waters, as reported in a previous study from our research group. In this study, we measured As (< 0.500 to 7.77 µg/L) and U (0.950 to 165 µg/L) in waters, as well as mine wastes (< 20.0 to 40.0 mg/kg As and < 60.0 to 110 mg/kg U) and background solids (< 20.0 mg/kg As and < 60.0 mg/kg U). Analysis with X-ray fluorescence (XRF) and electron microprobe show the co-occurrence of As and U with iron (Fe) and vanadium (V). These field conditions served as a foundation for additional laboratory experiments to assess the reactivity of metals in these mine wastes. Results from laboratory experiments indicate that labile and exchangeable As(V) was released to solution when solids were sequentially reacted with water and magnesium chloride (MgCl2), while limited U was released to solution with the same reactants. The predominance of As(V) in mine waste solids was confirmed by X-ray absorption near edge (XANES) analysis. Both As and U were released to solution after reaction of solids in batch experiments with HCO3 -. Both X-ray photoelectron spectroscopy (XPS) and XANES analysis determined the predominance of Fe(III) in the solids. Mössbauer spectroscopy detected the presence of nano-crystalline goethite, Fe(II) and Fe(III) in (phyllo)silicates, and an unidentified mineral with parameters consistent with arsenopyrite or jarosite in the mine waste solids. Our results suggest that As and U can be released under environmentally relevant conditions in mine waste, which is applicable to risk and exposure assessment.

13.
Joule ; 3(7): 1719-1733, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31417986

RESUMO

The morphology of electrode materials is often overlooked when comparing different carbon-based electrocatalysts for carbon dioxide reduction. To investigate the role of morphological attributes, we studied polymer-derived, interconnected, N-doped carbon structures with uniformly sized meso or macropores, differing only in the pore size. We found that the carbon dioxide reduction selectivity (versus the hydrogen evolution reaction) increased around three times just by introducing the porosity into the carbon structure (with an optimal pore size of 27 nm). We attribute this change to alterations in the wetting and CO2 adsorption properties of the carbon catalysts. These insights offer a new platform to advance CO2 reduction performance by only morphological engineering of the electrocatalyst.

14.
Chem Geol ; 524: 345-355, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31406388

RESUMO

We investigated the effect of bicarbonate and oxidizing agents on uranium (U) reactivity and subsequent dissolution of U(IV) and U(VI) mineral phases in the mineralized deposits from Jackpile mine, Laguna Pueblo, New Mexico, by integrating laboratory experiments with spectroscopy, microscopy and diffraction techniques. Uranium concentration in solid samples from mineralized deposit obtained for this study exceeded 7000 mg kg-1, as determined by X-ray fluorescence (XRF). Results from X-ray photoelectron spectroscopy (XPS) suggest the coexistence of U(VI) and U(IV) at a ratio of 19:1 at the near surface region of unreacted solid samples. Analyses made using X-ray diffraction (XRD) and electron microprobe detected the presence of coffinite (USiO4) and uranium-phosphorous-potassium (U-P-K) mineral phases. Imaging, mapping and spectroscopy results from scanning transmission electron microscopy (STEM) indicate that the U-P-K phases were encapsulated by carbon. Despite exposing the solid samples to strong oxidizing conditions, the highest aqueous U concentrations were measured from samples reacted with 100% air saturated 10 mM NaHCO3 solution, at pH 7.5. Analyses using X-ray absorption spectroscopy (XAS) indicate that all the U(IV) in these solid samples were oxidized to U(VI) after reaction with dissolved oxygen and hypochlorite (OCl-) in the presence of bicarbonate (HCO3 -). The reaction between these organic rich deposits, and 100% air saturated bicarbonate solution (containing dissolved oxygen), can result in considerable mobilization of U in water, which has relevance to the U concentrations observed at the Rio Paguate across the Jackpile mine. Results from this investigation provide insights on the reactivity of carbon encapsulated U-phases under mild and strong oxidizing conditions that have important implication in U recovery, remediation and risk exposure assessment of sites.

15.
J Power Sources ; 425: 50-59, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31217667

RESUMO

In recent years, the microbial fuel cell (MFC) technology has drawn the attention of the scientific community due to its ability to produce clean energy and treat different types of waste at the same time. Often, expensive catalysts are required to facilitate the oxygen reduction reaction (ORR) and this hinders their large-scale commercialisation. In this work, a novel iron-based catalyst (Fe-STR) synthesised from iron salt and streptomycin as a nitrogen-rich organic precursor was chemically, morphologically and electrochemically studied. The kinetics of Fe-STR with and without being doped with carbon nanotubes (CNT) was initially screened through rotating disk electrode (RDE) analysis. Then, the catalysts were integrated into air-breathing cathodes and placed into ceramic-type MFCs continuously fed with human urine. The half-wave potential showed the following trend Fe-STR > Fe-STR-CNT ≫ AC, indicating better kinetics towards ORR in the case of Fe-STR. In terms of MFC performance, the results showed that cathodes containing Fe-based catalyst outperformed AC-based cathodes after 3 months of operation. The long-term test reported that Fe-STR-based cathodes allow MFCs to reach a stable power output of 104.5 ±â€¯0.0 µW cm-2, 74% higher than AC-based cathodes (60.4 ±â€¯3.9 µW cm-2). To the best of the Authors' knowledge, this power performance is the highest recorded from ceramic-type MFCs fed with human urine.

16.
Analyst ; 144(13): 3949-3958, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31115399

RESUMO

Creating new environmentally friendly and non-toxic biomaterials with novel properties is required for numerous applications in healthcare and sensing. Protein bound gold nanoclusters constitute one such class of materials that offer promise in fluorescence imaging and sensing applications. However, unlike alkane thiol-protected gold nanoclusters, the number of protein-templated gold nanoclusters with such properties is limited and there is a need to expand the repertoire of such attractive hybrid quantum clusters. Herein, we report the synthesis, characterization, and applications of new fluorescent gold nanoclusters with tunable emission properties including blue, orange, and red, within a four-helix bundle copper storage protein (Csp1). The template protein consists of 13 cysteines along the length of the helix, which are suitable ligands to template Au and stabilize the resulting 14-19 atom clusters within the protein. The resulting clusters were extensively characterized by employing spectroscopic, microscopic and other analytical methods. The optical emission, relative quantum yields, and the excited state lifetime of the clusters are shown to depend on synthetic conditions. The clusters were found to be sensitive to the ppm level of transition metal ions with the quenching capabilities following the Irving-Williams series of metals (Co2+ < Ni2+ < Cu2+), which is rationalized based on the relative affinities of transition metals for a given set of ligands. The clusters were also found to be stable across the pH range 4-8.5 which, along with tunable emission properties paves the path for live bio-imaging and bio-sensing applications under physiological conditions.

17.
Environ Sci Technol ; 53(10): 5758-5767, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30998849

RESUMO

We investigated the functional group chemistry of natural organic matter (NOM) associated with both U(IV) and U(VI) in solids from mineralized deposits exposed to oxidizing conditions from the Jackpile Mine, Laguna Pueblo, NM. The uranium (U) content in unreacted samples was 0.44-2.6% by weight determined by X-ray fluorescence. In spite of prolonged exposure to ambient oxidizing conditions, ≈49% of U(IV) and ≈51% of U(VI) were identified on U LIII edge extended X-ray absorption fine structure spectra. Loss on ignition and thermogravimetric analyses identified from 13% to 44% of NOM in the samples. Carbonyl, phenolic, and carboxylic functional groups in the unreacted samples were identified by fitting of high-resolution X-ray photoelectron spectroscopy (XPS) C 1s and O 1s spectra. Peaks corresponding to phenolic and carbonyl functional groups had intensities higher than those corresponding to carboxylic groups in samples from the supernatant from batch extractions conducted at pH 13, 7, and 2. U(IV) and U(VI) species were detected in the supernatant after batch extractions conducted under oxidizing conditions by fitting of high-resolution XPS U 4f spectra. The outcomes from this study highlight the importance of the influence of pH on the organic functional group chemistry and U speciation in mineralized deposits.


Assuntos
Urânio , New Mexico , Oxirredução , Espectroscopia Fotoeletrônica
18.
Environ Sci Process Impacts ; 21(3): 456-468, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30714588

RESUMO

The mobilization of arsenic (As) from riverbank sediments affected by the gold mining legacy in north-central South Dakota was examined using aqueous speciation chemistry, spectroscopy, and diffraction analyses. Gold mining resulted in the discharge of approximately 109 metric tons of mine waste into Whitewood Creek (WW) near the Homestake Mine and Cheyenne River at Deal Ranch (DR), 241 km downstream. The highest concentrations of acid-extractable As measured from solid samples was 2020 mg kg-1 at WW and 385 mg kg-1 at DR. Similar sediment mineralogy between WW and DR was identified using XRD, with the predominance of alumino-silicate and iron-bearing minerals. Alkalinity measured in surface water at both sites ranged from 1000 to 2450 mg L-1 as CaCO3 (10-20 mM HCO3- at pH 7). Batch laboratory experiments were conducted under oxidizing conditions to evaluate the effects of NaHCO3 (0.2 mM and 20 mM) and NaH2PO3 (0.1 and 10 mM) on the mobilization of As. These ions are relevant for the site due to the alkaline nature of the river and nutrient mobilization from the ranch. The range of As(v) release with the NaHCO3 treatment was 17-240 µg L-1. However, the highest release (6234 µg L-1) occurred with 10 mM NaH2PO3, suggesting that As release is favored by competitive ion displacement with PO43- compared to HCO3-. Although higher total As was detected in WW solids, the As(v) present in DR solids was labile when reacted with NaHCO3 and NaH2PO3, which is a relevant finding for communities living close to the river bank. The results from this study aid in a better understanding of As mobility in surface water sites affected by the mining legacy.


Assuntos
Monitoramento Ambiental/métodos , Arsênio , Bicarbonatos , Sedimentos Geológicos , Ferro , Mineração , North Dakota , Fosfatos , Rios , South Dakota , Água , Poluentes Químicos da Água
19.
ACS Appl Energy Mater ; 1(10): 5755-5765, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30406217

RESUMO

In this work, benzimidazole (BZIM) and aminobenzimidazole (ABZIM) were used as organic-rich in nitrogen precursors during the synthesis of iron-nitrogen-carbon (Fe-N-C) based catalysts by sacrificial support method (SSM) technique. The catalysts obtained, denoted Fe-ABZIM and Fe-BZIM, were characterized morphologically and chemically through SEM, TEM, and XPS. Moreover, these catalysts were initially tested in rotating ring disk electrode (RRDE) configuration, resulting in similar high electrocatalytic activity toward oxygen reduction reaction (ORR) having low hydrogen peroxide generated (<3%). The ORR performance was significantly higher compared to activated carbon (AC) that was the control. The catalysts were then integrated into air-breathing (AB) and gas diffusion layer (GDL) cathode electrode and tested in operating microbial fuel cells (MFCs). The presence of Fe-N-C catalysts boosted the power output compared to AC cathode MFC. The AB-type cathode outperformed the GDL type cathode probably because of reduced catalyst layer flooding. The highest performance obtained in this work was 162 ± 3 µWcm-2. Fe-ABZIM and Fe-BZIM had similar performance when incorporated to the same type of cathode configuration. Long-term operations show a decrease up to 50% of the performance in two months operations. Despite the power output decrease, the Fe-BZIM/Fe-ABZIM catalysts gave a significant advantage in fuel cell performance compared to the bare AC.

20.
Nanomaterials (Basel) ; 8(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467289

RESUMO

Platinum group metal-free (PGM-free) catalysts based on transition metal-nitrogen-carbon nanomaterials have been studied by a combination of ex situ and in situ synchrotron X-ray spectroscopy techniques; high-resolution Transmission Electron Microscope (TEM); Mößbauer spectroscopy combined with electrochemical methods and Density Functional Theory (DFT) modeling/theoretical approaches. The main objective of this study was to correlate the HO2- generation with the chemical nature and surface availability of active sites in iron-nitrogen-carbon (Fe-N-C) catalysts derived by sacrificial support method (SSM). These nanomaterials present a carbonaceous matrix with nitrogen-doped sites and atomically dispersed and; in some cases; iron and nanoparticles embedded in the carbonaceous matrix. Fe-N-C oxygen reduction reaction electrocatalysts were synthesized by varying several synthetic parameters to obtain nanomaterials with different composition and morphology. Combining spectroscopy, microscopy and electrochemical reactivity allowed the building of structure-to-properties correlations which demonstrate the contributions of these moieties to the catalyst activity, and mechanistically assign the active sites to individual reaction steps. Associated with Fe-Nx motive and the presence of Fe metallic particles in the electrocatalysts showed the clear differences in the variation of composition; processing and treatment conditions of SSM. From the results of material characterization; catalytic activity and theoretical studies; Fe metallic particles (coated with carbon) are main contributors into the HO2- generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...